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A new method for partition of interaction energy is proposed. The scheme 
given here easily connects the calculated stabilization energy with the orbital 
mixing in analyzing orbital interactions of molecules. The method can reveal 
the relation between the change of  electron distribution and stabilization 
energy. As an example, orbital interaction energies are estimated for diazocom- 
pounds, diazomethane and diazirine. 
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Introduction 

The intra- or inter-molecular interaction is one of the most interesting problems 
in theoretical chemistry. Therefore, there are many methods for dealing with the 
nature of interactions. The frontier orbital theory developed by Fukui [1] is the 
most convenient tool in order to describe the qualitative orbital interactions. The 
orbital mixing rule and configuration analysis [2] are also used to analyze 
complicated systems. On the other hand, it is necessary to calculate interaction 
energies in order to clarify the bonding nature in more detail. The configuration 
analysis also gives this quantitative information in weak interacting systems [3]. 
However, the method is not suitable for discussing the bonding nature in strong 
interacting systems such as a metal-ligand bond in transition metal complexes. 
In order to overcome such a difficulty, other types of energy decomposition 
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schemes have been developed by several authors [4]. A method proposed by 
Morokuma [5] was often applied to calculate interaction energies in weak interact- 
ing systems. Moreover, the method has been improved by Kitaura and Morokuma 
[6] for analyzing the relatively strong interactions and was applied to some 
transition metal complexes with CO2, C2H4 as ligands [7]. In this method, the 
interaction energy is divided into energy contributions such as electrostatic (ES), 
charge transfer (CT), polarization (PL), and exchange (EX) interactions. 
However, calculated energies cannot be directly connected with the orbital mixing 
rule. 

On the other hand, the stabilization due to the orbital mixing is brought from 
mixture of  all interactions. The ~- back-donation of diazomethane shown in Fig. 
1 is adopted as an example in order to explain this effect. MO's in Fig. lb all 
have the b~ symmetry. In general, three types of interactions are considered except 
for the electrostatic interaction. The first is the charge transfer (CT) which is 
caused by an electron density transfer from occupied MO's of the one fragment 
(A) to unoccupied MO's of the another fragment (B) and vice versa. The second 
is the polarization (PL) from occupied MO's to unoccupied MO's within the 
same fragment. In this case, they correspond to r zr* and r - or* interactions, 

nCH (0. 462 ) /0o3 
nN(l. 725 ) 

%o2 

(a) o donation 

Ou+(1.849) 

~* (0.690) x 
~br~2 

nCH (i- 348) 

~ 9 9 3 )  

~ back-donation 
\ . �9 r~ (0.079) 

(b) 

• •  
~ (i 966) 

(c) b 2 interaction 

Fig. la--e. Schematic representation of orbital interactions in diazomethane. (a), (b), and (e) represent 
cr donation, 7r back-donation and b 2 interaction, respectively 
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respectively. The last is the exchange repulsion (EX) between occupied MO's of 
both fragments, for example, that between wcn and ~rx. Therefore, the orbital 
interaction includes all of these interactions. On the other hand, the interaction 
does not include the electron repulsion between ~rx or ZrcH and other occupied 
MO's such as n N or py. It is because the former MO's do not overlap with the 
latter ones. Therefore, the orbital interaction energy includes CT, PL and EX 
interactions and excludes the electron repulsion between MO's without over- 
lapping. It is very interesting to understand the bonding natures by calculating 
the energies which can be defined as the stabilization energies originating from 
orbital mixing. 

In this paper, a new method for analyzing stabilization energies is developed 
and applied to compounds, diazomethane and diazirine. 

2. Method of calculations 

2.1 Energy partition scheme 

In elucidating orbital interactions in a molecule (a combined system), it is often 
divided into two parts which are called isolated systems. The total stabilization 
energy, AEstab  , is defined as the difference between the total energy of the 
combined system. E,, and sum of those calculated for isolated submolecules, Eo, 

A Estab = E , -  Eo, (la) 

where 

Et =E 2Hi +E (2Jo - Ko), (lb) 
i i j  

Eo= EA + E~, 

= E 2 h r , +  ( 2 & - g , s )  . ( l c )  

Here, i, j and r, s denote indexes of combined and isolated MO's respectively. 
Moreover, EA and EB denote total energies of isolated submolecules, A and B. 
In order to relate stabilization energies to the orbital mixing, it is necessary to 
express E, using isolated MO's. MO's of combined system, {qJ~}, are expressed 
using the linear combination of isolated MO's {4~r} such as 

r 

where {Cri} is the set of expansion coefficients. Substituting Eq. (2) into (1), we 
obtain 

Et = ~ Pr~H,~ +�89 ~ ~ Pr~Pt.{(rs I tu) - 1/2(rtlsu)}, 
r s  r s  t i t  

where 
O C C  

P~s = E 2C,,C,,. 
i 

(3a) 

(3b) 
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The classical coulombic stabilization energy, AEes, is the energy difference between 
Eo and the energy evaluated by use of  a Hartee product of  isolated MO's, 

A E~ = Eo - E h .  

= - -4  ~ A  L B  ( rr l s s )  
r s 

- �89  a . = Q.Q.~(rrlss), (4) 
r s 

where Q, = 2 if r is an occupied MO in isolated molecules and, in other cases, 
they are always equal to zero. A or B denote that &, is the MO of the isolated 
submolecules A or B. However, the ES interaction does not directly concern with 
the orbital mixing. Therefore, the energy difference between Et and Ehp can be 
defined as the interaction energy, AEint, caused by all types of orbital interactions, 

m Eint = Et - Ehp. (5) 

If  a combined system has a symmetry, occupied MO's can be divided into several 
groups according to the symmetry or the type of the orbital interaction. As there 
are no overlaps between MO's with different symmetries, the density matrix using 
isolated MO's have the form represented in Fig. 2. Et and Ehp are expressed by 
use of  this density matrix and Ors, 

E, = r.~[ ~s~r~ P~H~+ I ~,.~r~ ~ y" Pr~P'u{(rs'tu)-�89 

+ I L  L Y. L PrsP,.{(rsltu)-�89 (6a) 
ra  rb  rs~Fa tu~Fb 

Ehp= L [ L Q . H .  +1 ~. 8ABQrrQ~{(rrlss )_�89 
Fa I r~ra rscFa 

A B  ] +�89 E Q.Q,,(rrlss) 
r s~ra  

+�89 E ~, ~, L aABQ, Q~A(rrlss)-�89 
f a Fb r~Fa s~I 'b  

+ � 8 9  L A B  Q .  Q ~ ( rrl ss ), (6b) 
Fa Fb r cF a  sc I 'b  

where Prs (rsc  Fa)  is an element of the density matrix with the symmetry Fa. 
In this equation, SAn is equal to 1 when both ~b, and ~bs are MO's of  the same 
submolecule, A or B, and otherwise equal to 0. Substituting Eqs. (6) into (5), 

~Prs! rb) Fig. 2. Form of density matrix when molecule symmetry has two elements, Fa 
and Fb 
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then we have, 

AEin t ----- ~ AE(Fa) +AEe, 
F a  

where 

(7a) 

AE(Fa) = 2 (Pr, - Q~)Hr~ + l y. ~ P~sP,.{(rsl tu) -�89 
rs rs t i t  

-�89 X 8A,Q,,Q,,{(rrlss) 
rs 

_�89189 ~ A Qr~Q~(rr[ss) (rs= Fa), (7b) 
rs 

A~'er = X E r�89 ~-~ E e, sP,.{(rsltu)-�89 
r .  rb  L rs=Fa tu~Fb 

-�89 X ~ aA~Qr~Q~/(rrlss) 
~=r~ s=rb 

A "  ] -�89189 ~ 2 QrrQ~,(rr[ss) �9 (7c) 
r ~ F a  s c F b  

Therefore, the interaction energy can be divided into energies which contribute 
to the bond formation owing to the orbital mixing. Terms in Eq. (7) are classified 
into two categories. One is the energy which is represented only by the density 
matrix of a symmetry, (7b), and the other needs those of the different symmetries, 
(7c). Hereafter, they are called the orbital interaction energy, AE(x) (x indicates 
the type of an interaction) and the electron repulsion energy, AE,, The orbital 
interaction energies can be analyzed in more detail as follows; 

AE(x) = AE I +AE2 +AE3 +AE4 

~AE, +AE2 +AE3, (8a) 

where 

AEt =Y~ (Prs - Qrs)Hr~ (8b) 
r s  

AE2 = �88 2 [P~s{3(rsl rs) - (rrlss)} + PrrPss(2(rrlss ) --(rslrs)}] 
rs 

- �89 aA,Q.rQ~.((rrJss)-�89 +�89 2 P.P.~(rrlrs) 
rs r #  s 

Q r r Q s x ( r r l s s ) ,  (8c) 
r $ 

AE3=�89 ~ [(2Pr~P~,-P~sP,)(rrlst)+(3P~P,-p~p~,)(rslrt)]. (8d) 
r :~ s , r#  t 

s ~ t  

All suffixes have the same symmetry. Negative and positive values indicate the 
stabilization and destabilization, respectively. AEI and AE2 contain only one and 
two center integrals. AE3 which is sum of the three center integrals does not 



82 K. Hori et al. 

appear in calculation of Ehr It is not necessary to estimate the remaining four 
center terms, AE4, because they do not make a serious contribution to the orbital 
interaction energy [8]. AE~ ~ AE3 show the change of one and two electron 
energies brought by the rearrangement of electron distribution due to orbital 
mixing. 

It is considered that the main part of the interaction energy of a system originates 
from the rearrangement of the electron density in valence MO's. That is, core 
MO's scarcely change before and after formation of the combined system. While 
the orbital interaction energy of core MO's is probably negligible, the electron 
repulsion energy between core and valence MO's, AE (core-x), should be taken 
into account because the change of valence MO's is drastic. Therefore, this term 
is also added to the orbital interaction energy, 

AE(x) = AE(core-x) +AEx, (9) 

where AE~ is the contribution from the valence MO parts. However, the partition 
of core orbitals is not always possible. It is necessary to use large basis sets in 
order to represent the correct electronic structures of molecules with heavy atoms 
such as transition metal complexes. Not only compact but diffuse orbitals, i.e., 
various orbital functions with different exponents through a wide range, are 
necessary to describe core orbitals precisely. On the other hand, these basis 
functions are also important for valence MO's. Therefore, both orbitals have 
relatively large overlaps with valence or core MO's of the other fragment. Orbital 
interactions in these molecules cannot be divided into the contribution from core 
or valence MO parts. 

Eqs. (7-8) are expressed using MO indexes. However, it is possible to calculate 
these energies without transforming atomic orbital (AO) integrals into MO 
integrals. They are easily obtained by the following process. 

(1) Divide occupied MO's of combined and isolated systems into several groups 
according to types of symmetries. 

(2) Make density matrices of both systems, P~,~(Fa), and P~(Fa) ,  respectively, 
using partitioned MO's. 

(3) Calculate electron energies of each interaction. A general ab initio SCF 
program automatically calculates these energies in terms of the density matrixes 
previously mentioned. In this step, therefore, it is no use changing a program or 
getting self-consistent field (SCF) convergence. However, it is necessary to modify 
two electron atomic integrals in order to evaluate AEes [5]. The orbital interaction 
energy of the Fa symmetry, AE(Fa) is given by, 

AE(Fa) = E(ra)  - Ee,(ra), (lOa) 

where 

E(ra)  = E P,,~(ra)/-/,,~ +�89 Y E P~(ra)P~(ra) 
,~v ,u.v gA 

• {(/zvlKA) --I(/~KIvA)}, (lOb) 
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Here, ~, v, etc. denote indexes of atomic orbitals. Ee~(Fa) is calculated by 
substituting P~,~ for P~,~ and using modified atomic integrals. 

On the other hand, the electron repulsion energy, AEe, is estimated by difference 
between AEint and sum of AE(Fa), 

AEer = AEint-- ~ AE(Fa). (10c) 

In the case that more detailed analysis is required, orbital interaction energies 
must be estimated and discussed by use of Eqs. (8). 

(4) The interaction energy due to orbital mixing is the sum of AE(x) and AEe,. 

The change of electron distribution due to orbital mixing can also be analyzed. 
A difference density between combined and isolated systems is calculated in 
terms of interactive orbitals for each type of interactions as follows 

Ap(Fa) = ~  I~i(Fa)12-E 16r(Fa)l 2, (11) 
i r 

where 0~ and ~br indicate MO's of combined and isolated systems, respectively. 

2.2 MO calculation 

LCAO-MO-SCF calculations are carried out with GAUSSIAN-80 program [9] 
and IMSPAK one [10]. 3-21G basis sets internal to the program are used and 
geometries of small molecules are optimized by the energy gradient method, 
assuming a CEv symmetry for both compounds. Results of vibration analysis 
show that they have the symmetry at their most stable structures. N-N bond 
lengths optimized for N2, diazomethane, and diazirine are 1.083, I. 13 l, and 1.217 
~ ,  respectively. C-H, C-N lengths and HCH angle in diazomethane are 1.065, 
1.275 ,~ and 114:4 ~ respectively. Those in diazirine are 1.064., 1.552 ,~ and 121.4 ~ 
respectively. 

3. Results and discussions 

3.1 Orbital interaction energies 

As an example of a new method, diazomethane and diazirine are employed. 
These small molecules are considered model compounds of dinitrogen complexes 
and have already been investigated [11]. The CH2 planes of these molecules are 
located on the yz-plane as shown in 1. 

Z 

Ly 
H~c/ -H 

H .  ~H 

N 

diazomethane diazirine 
1 
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The symmetries of  MO's  are assigned on this condition. Therefore, MO's  related 
to cr donat ion and r back-donation have a I and b I symmetries, respectively, in 
both these diazo-compounds.  In diazirine, we had better designate the r donation 
rather than the cr donat ion because a donating orbital is not nN but wz of the 
dinitrogen ligand. However,  riCH accepts the density in both cases. Therefore, all 
the electron donation to riCH is designated as the cr donation. There is another 
interaction with the b 2 symmetry different from the two interactions and is called 
the b2 interaction. This interaction causes the redistribution of the electron density 
which is transferred by the former two interactions. 

Results of  the energy partition scheme are summarized in Table 1. Orbital 
interaction energies of  diazomethane are 0.26801, -0.49320, and -0.23372 a.u. 
for o, donation, r back-donation,  and b2 interactions, respectively. AEer is 
0.49642 a.u. and the total stabilization energy is -0.15780 a.u. 

The ~ back-donat ion leads to the formation of  the C-N bond because the 
stabilization energy is negative. The b: interaction also gives stabilization. 
However,  the cr donat ion does not lead to the formation of  the C-N bond. As 
mentioned above, AE(t r  donation) is the sum of two contributions, AE(core-cr) 
and AEo- They are calculated to be -0.30789 and 0.57590 a.u., respectively. The 
negative value of the former indicates decrease of  an electron repulsion energy 
between core and cr valence MO's.  On the other hand, the change of AE~ indicates 
destabilization. In discussing orbital mixing in diazomethane, four orbitals are 
taken into account as is shown in Fig. la  [12]. Since CrcH and ncH of  the C H  2 

+ 
moiety overlap with nN and or, in a dinitrogen ligand, they also relate to cr 

+ and itCH--nN in ~b~ 2 and donation. The orbital mixing rule says that crcla- o'u 
~b~ 3 overlap in an out-of-phase fashion. In fact, AEI(O-cH - tr +) and AEI (etch - r /N) 

are 1.531 and 1.554 a.u., respectively. This shows that these types of  orbital mixing 
do not give a stabilization energy. On the other hand, n c H -  nN and riCH -- O'u + in 
~b~ 2 and ~b~ 3 interact in an inphase manner  and this interaction leads to stabilization 
(AE1 between these orbitals are -0.808, -2.621 a.u., respectively). On the other 

+ the absolute value of  one electron terms hand, due to CT from r/N and o'u to ncH, 
decreases by 3.583, 1.168 a.u. for the two former ones and increases by 1.713 au 
for the last orbital. The destabilization due to orbital mixing of  Crcn override the 

+ 
stabilization brought  by CT from nN and o-u to nc8 and PL from Crc~ to ncH. 

Table 1. Orbital interaction energies calculated for diazomethane 
diazirine 

Diazomethane Diazirine 

and 

AE (es) -0.19312 -0.15936 
AE (core) -0.00231 -0.00496 
AE (tr donation) 0.26801 -0.24634 
AE (w back-donat ion)  -0.49320 -0.63720 
AE (b2) -0.23372 0.46691 
AE~ 0.49642 0.43336 
Total -0.15780 -0.14762 
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The sum of the four terms and electrostatic energies is -0.65434 a.u. AEer is 
the sum of  changes in AE(o--~r)er (0.32821 a.u.), h E ( o ' - b 2 ) e r  (0.11029 a.u.), 
hE(zr  - b2)er (0.05743 a.u.) and other small terms, where o-, 7r and b2 correspond 
to one of  Fa, Fb in Eq. (7c). The stabilization energy of all the interactions 
considered in the calculations is -0.15780a.u.  Therefore, the contribution of  
other higher term (a mixed term of all interactions) is only -0.00012 a.u. 

The difference density maps of the o- donation and ~" back-donation are shown 
in Fig. 4. The o- donation causes both the decrease of the electron density in nN 

+ 
and tr ,  and the increase in ncH as easily understood from Fig. 4a. On the other 
hand, Fig. 4b shows the 7r back-donation, which includes CT and PL interactions. 
While the former interaction has changed the density around a carbon atom and 
a dinitrogen ligand, the latter decreases the ~r density between two nitrogen atoms. 

The energy contributions of or donation, ~r back-donation and b2 interactions in 
diazirine are -0.24634, -0.63720, and 0.46691 a.u., respectively. The electron 
repulsion energy calculated for the molecule is -0.43336 a.u., so that the higher 
term (0.00003 a.u.) is small in comparison with other components. The change 
of electron density due to these interactions is well described by the difference 

nCH(0.619)-- 

~z(1.404) 

(a) o donation 

~(0.995) 

(b) ~ Q ~ ~ a c k - d ~ ~  u (1.994) 

Py / 

~y(1.952) 

(c) b 2 interaction 

Fig. 3a-e. Schematic representation of orbital interactions in diazirine. (a), (b) and (c) correspond 
to cr donation, ~" bacbdonation and b 2 interaction, respectively 

py(2.012) 
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density map as shown in Fig. 5. The increase and decrease between C and N 
atoms in Fig. 5a show the o- donation from 7rz and nN to ricH. On the other hand, 
the ~- back-donation from 7rCH to ~r* in Fig. 5b causes the increase and decrease 
of the density around N2 and CH2 moieties, respectively. Occupation numbers 
of  these orbitals change as shown in Figs. 1 and 3. 

Total energies of diazomethane and diazirine, -146.99578 and -146.94779 a.u., 
respectively, indicate that the former is more stable than the latter. However, 
AEstab of  these molecules are calculated to be -0.15780 and -0.14762a.u.,  
respectively. Therefore, the magnitude of  the interactions between carbene and 
nitrogen molecule does not decide the relative stability of  the two compounds. 
While total energies of  the CH2 fragments for these isomers are close to each 
other (-38.54407 and -38.54157 a.u. for moieties of  diazomethane and diazirine, 
respectively), the deformation energy [13] of  the N2 fragment in forming the C-N 
bond are 0.00734 and 0.04235 a.u., respectively. The difference of the energy 
determines the stable structure between the two isomers. The larger deformation 
energy is attributed to the fact that the decrement of ~rz electron and the increment 
of  the ~r* density are larger in diazirine than those in diazomethane. 

3.2 Comparison of the new method with the K M  method 

In order to compare the present method with the KM one, interaction energies, 
AEEx , AEFcTPLX , and AEBcTPLX of  diazo-compounds are calculated and results 
are listed in Table 2. Some differences are seen between the two methods. The 
most characteristic dissimilarity exists in the contribution of the or donation. The 
stabilization energies of  the interaction is 0.26801 (AE(o- donation)) and -0.17462 
(AEFcTPLX) a.u. for the present and KM methods, respectively. Several reasons 
are considered for this discrepancy between the two methods. The first one is 
about the standard energy in calculating stabilization energies. FCTPLX of the 
KM method is defined as the difference between the energy using Hartree-Fock 
product  (Ehfp) and that obtained by solving FCTPLX Fock-equation. On the 
other hand, our method adopts the orbital interaction energy as the difference 
between Et and Ehp. When Ehp is used as the standard energy in the KM method, 
this interaction as well as the BCTPLX gives positive stabilization energies 
(destabilization) as listed in parentheses of  Table 2. These results are attributed 

Table 2. Results of energy decomposition by use of the KM method for 
diazomethane and diazirine 

Diazomethane Diazirine 

AEes -0.19312 -0.15936 
AEEx 0.40517 0.29599 
A EFCrPLX --0.17462 (0.01850) --0.15055 (0.00882) 
A EBCrPLX --0.18725 (0.00587) --0.20724 (--0.04787) 
R -0.00889 0.07355 
Total -0.15780 -0.14762 
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to the fact that our method includes all the interactions while the KM method 
is estimated by use of  the energy of the specific interactions. For example, in 
calculating an FCTPLX energy, CT from N2 to CH2 and PL in a CH2 moiety 
are only allowed. However, a n N -  o-* type polarization in N2 also facilitates the 
CT interaction because the orbital balloons up at the N atom adjacent to CH2 
as is shown in 2. 

M o r e o v e r ,  t he  n u m b e r  o f  M O ' s  in e s t i m a t i n g  the  s t ab i l i za t ion  e n e r g y  is d i f fe ren t  

e a c h  o ther .  O t h e r  t r ends  are  s imi la r  in t he se  t w o  m e t h o d s .  F o r  e x a m p l e ,  t he  rr 

b a c k - d o n a t i o n  is m o r e  ef fec t ive  t h a n  the  or d o n a t i o n  in t he  two  i s o m e r s  t h o u g h  

the  a b s o l u t e  v a l u e s  a re  n o t  cons i s t en t  w i t h  e a c h  o ther .  

4. Concluding remarks 

The new method represented here can divide the energy which is defined as the 
difference of Et and Ehp to orbital interaction energies. It has several features 
and convenience. The first is that the energy are obtained without SCF calculation. 
A method including iteration process must make Fock-matrix and diagonalyze 
it repeatedly until the convergence would be achieved. The step is the most time 
consuming one in large molecules, for example, transition metal complexes. 
Moreover, such a method cannot afford detailed informations in SCF convergence 
failure. Moreover, subroutines for a special Fock matrix must be added to a usual 
ab initio program. The present method does not have such a proposal. It is only 
making density matrixes that need to estimate orbital interaction energies. 

The second is that the energies explicitly concern with orbital mixing rule because 
they are calculated by use of only MO's with overlapping. Therefore, origin of 
the stabilization energy can be easily analyzed. The method also shows the relation 
between the density distribution and the energy contribution. 
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